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A spectacular feature of transient cavity collapse in the neighbourhood of a rigid 
boundary is the formation of a high-speed liquid jet that threads the bubble and 
ultimately impacts upon the side of the bubble nearest to the boundary. The bubble 
then evolves into some toroidal form, the flow domain being doubly connected. In this 
work, the motion of the toroidal bubble is computed by connecting the jet tip to the 
side of the bubble upon which it impacts. This connection is via a cut introduced into 
the flow domain and across which the potential is discontinuous, the value of this 
discontinuity being equal to the circulation in the flow. A boundary integral algorithm 
is developed to account for this geometry and some example computations are 
presented. Consideration of the pressure field in the fluid has implications for possible 
damage mechanisms to structures due to nearby cavity collapse. 

1. Introduction 
In their paper on cavitation, Benjamin & Ellis (1966) postulate that upon the 

collapse of a cavitation bubble in the neighbourhood of a rigid boundary, the bubble 
evolves into toroidal form, with an attached vortex ring. The circulation in the flow 
arises from the change in the flow topology from a singly connected to a doubly 
connected domain. As noted by these workers, the existence of the circulation in the 
flow field is necessary to conserve the Kelvin impulse. The theoretical discussions of 
Benjamin & Ellis (1966) were based on the experimental evidence embodied in high- 
speed photographic records of cavity collapse near to rigid boundaries. Owing to the 
greater mobility of the flow away from the boundary the collapse of the surface there 
proceeds at a greater speed than elsewhere, causing a jet to form and thread the bubble, 
ultimately impacting upon the far side of the bubble, nearest the boundary. 

The formation of vortex ring bubbles has also been postulated upon the collapse of 
the bubble produced by an underwater explosion. The fluid dynamics of this 
phenomenon is very similar in character to that of the cavitation bubble. During early 
research into underwater explosions it was found that, based on computations 
assuming a spherical bubble, the apparent loss of energy per bubble oscillation could 
not be accounted for by the expected loss mechanisms of acoustic radiation, heat 
transfer and turbulence. This led to the postulate that the bubble evolves after the first 
collapse into a vortex ring bubble, with the quantity of kinetic energy bound in the 
vortex motion seeming to account for the apparent losses. For a discussion of this 
problem the reader is referred to the review by Holt (1977). 

Numerical investigations of this jetting phenomenon have been undertaken and 
generally assume the irrotational flow of an incompressible and inviscid fluid. The first 
study of significance was that of Plesset & Chapman (1971) who employed a particle- 
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Rigid boundary 

FIGURE 1 .  The geometry used to consider axisymmetric bubble motion in the neighbourhood of a 
rigid boundary. 

in-cell technique to compute the collapse of an initially spherical bubble in the 
neighbourhood of a rigid boundary. This method was successful in predicting the 
formation and development of the jet up until the time that it impacts upon the far side 
of the bubble. Since this investigation, the boundary integral method has proved to be 
a successful technique for computing bubble motion (Guerri, Lucca & Prosperetti 
1981 ; Blake, Taib & Doherty 1986, 1987); however, to date these calculations may only 
proceed up until the time that the jet impinges upon the far side of the bubble. We 
further remark that this method has recently been utilized to compute the motion of 
constant-volume vortex ring bubbles (Lundgren & Mansour 1991). 

The fluid dynamics of the jet impact is complex, with compressibility, viscosity and 
surface tension expected to play a role. The magnitude of their contributions is 
expected to vary in different physical regimes, and we give this matter some 
consideration later in this paper in the light of both our numerical results and recent 
experimental observations. The aim of this study is to neglect such complicating factors 
and seek a solution of Laplace’s equation in the doubly connected geometry that 
evolves from the solution in the singly connected domain, that describes the flow field 
just before impact. Thus we are seeking to determine the motion in the regime where 
the fluid inertia is the dominant feature. In this context the moment of impact poses 
several difficulties. In the first instance the potential function becomes multivalued at 
the impact site. This discontinuity will be later identified with the circulation in the flow 
that persists in the toroidal geometry. Secondly, there is a jump in the magnitude of the 
normal derivative of the potential, a$/an, across the impact site. From kinematical 
considerations, this discontinuity cannot persist after the impact. Thus we must give 
some consideration to the moment of impact. 

First, though, we review the boundary integral method since it is this technique that 
will be modified to compute the motion of toroidal bubbles. We then give consideration 
to the impact of fluid surfaces in order that we may numerically undertake the 
transition to the toroidal geometry that occurs due to jet impact. After impact has 
occurred the flow domain is doubly connected and possesses a circulation. In order to 
implement the boundary integral method we introduce a cut in the flow domain so that 
we may consider it as simply connected. Across this cut the potential is discontinuous, 
the magnitude of the discontinuity equal to the circulation in the flow. We consider the 
motion of several toroidal bubbles and the computations suggest that, upon the 
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rebound of a toroidal bubble, the fluid flowing through the torus may thin sufficiently 
that the flow domain resumes singly connected topology. This is in accord with the 
experimental results of Vogel, Lauterborn & Timm (1989) which indicate that 
permanent vortex ring bubbles may be formed upon the second collapse of a transient 
cavity. 

2. The boundary integral method 
We suppose that a bubble undergoes some motion in a fluid and shall denote the 

domain occupied by the fluid as SZ, with aQ signifying its boundary. The bubble 
surface, S, is a subset of aSZ. We shall further denote by n the normal to aSZ and choose 
that it be directed exterior to SZ. We allow for the presence of a uniform gravitational 
field and choose a Cartesian set of axes, defined by the orthonormal basis e,, ey, e,, 
such that the gravitational acceleration is given by g = -ge,. A schematic 
representation of this geometry is shown in figure 1. 

We describe the fluid as inviscid and incompressible and the flow induced by the 
bubble's motion as irrotational. We introduce a velocity potential, q5, with q5 satisfying 
Laplace's equation in 0: 

v24 = 0. (2.1) 

On aSZ appropriate boundary conditions are employed. There is no flow normal to a 
rigid boundary and the potential is assumed known at free surfaces. The Bernoulli 
equation is utilized to determine the evolution of free boundaries, that of significance 
in this study being the bubble surface. In our coordinate system the Bernoulli equation 
takes the form 

In this expression t ,  p, p and p ,  respectively denote the time, density, pressure and 
hydrostatic pressure at zo. In t h s  investigation surface tension is neglected. 

We employ an elementary description of the bubble contents. We suppose that the 
bubble contents consist of the liquid vapour that exerts a constant partial pressure, pc,  
throughout the lifetime of the bubble, and a non-condensible gas that we describe as 
ideal and undergoing adiabatic expansions. The partial pressure exerted by the non- 
condensible gas is thus given as a function of the volume, V, so that the pressure, pb, 
inside the bubble is given by 

(2.3) 

where the subscript 0 denotes initial quantities and y is the ratio of specific heats. In 
this study we choose y = 1.4. In the past, numerical investigations of transient cavity 
dynamics have neglected the presence of a non-condensible gas within the bubble, 
based upon the assumption that, particularly during the collapse of the bubble, the 
liquid vapour condenses sufficiently quickly that a constant pressure within the bubble 
is maintained. Much experimental evidence, however, indicates that the later stages of 
the bubble collapse proceed so quickly that this cannot occur. This is evidenced by the 
pronounced rebound of such bubbles, caused by the high pressure created as the 
vapour that does not condense is rapidly compressed in the very brief period about 
minimum volume (Vogel et al. 1989; Lauterborn 1982; Lauterborn & Bolle 1975; 
Benjamin & Ellis 1966). In the example of underwater explosion bubbles, the bubble 
contents are primarily composed of the non-condensible remnants of the detonation. 

Pb = Pc +PO( b/ v)y, 



82 J .  P .  Best 

It is useful at this point to introduce a time and length scale, and a number of the 
physical parameters that characterize the motion. We choose the maximum bubble 
radius, R,, as a lengthscale and R,@/Ap)i as a timescale. The potential scale is thus 
R,(Ap/p)Y and pressures are scaled with respect to Ap = p ,  -pc .  Using this scaling the 
Bernoulli equation evaluated at the surface of the bubble becomes 

where 6 = @gR,/Ap)i (2.5) 

is the buoyancy parameter, which provides a measure of the strength of the buoyancy 
force. In this paper we shall not consider cases where S is non-zero, but retain the 
buoyancy term for completeness. Our principal concern is with motion in the 
neighbourhood of a plane rigid boundary. Supposing that the motion begins at some 
distance to from the boundary, we define 

P = 5oIRm (2.6) 

as a geometry parameter, and this gives some measure of the influence of the flow 
induced by the presence of the boundary upon the bubble’s motion (see Blake et al. 
1986; Blake & Gibson 1987). Finally we note the parameter a defined as 

We shall suppose that the bubble is initially spherical and of radius R,. The motion of 
the bubble is driven from rest by the partial pressure exerted by the non-condensible 
gas and the parameter a provides some measure of the strength of this pressure. We 
choose our initial bubble radius, given the value of a, such that radial oscillations in 
an infinite fluid would give rise to a maximum radius of one (see Best & Kucera 1992). 

Application of Green’s theorem allows us to write the solution of Laplace’s equation 
in the domain Q as 

with 

The surface aQ is supposed to be everywhere smooth. The point p is somewhere in the 
flow domain and a/an = n.V is the normal derivative at the boundary. The Green’s 
function is given by G and the notation Q\aQ denotes the complement of aQ in Q. We 
comment that if aQ were not smooth (such as in cases where there are corners) then 
(2.8) remains valid, but the value of the function c at the points where the surface is 
not smooth would differ from 2a. It is a routine matter to determine the value of this 
function given the surface geometry. The reader may consult Seybert et al. (1985) for 
details. 

In developing the boundary integral method for the solution of problems in bubble 
dynamics we note that the surface, as, that bounds the flow domain includes the 
bubble surface S.  If we consider motion in an infinite fluid then ai2 is identically the 
surface of the bubble. In cases where the geometry of the flow domain is particularly 
simple we may circumvent the need to include boundaries, other than the bubble 
surface, in our description by appropriate choice of the Green’s function. The geometry 
of particular relevance here is that of motion in the neighbourhood of a rigid 
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boundary. We may account for the presence of such a boundary by the addition of an 
image to the Green’s function, in which case we need only take a52 in (2.8) as the 
surface of the bubble. From a computational point of view this modification of the 
Green’s function alleviates the necessity of having a description of the rigid boundary 
and evaluating integrals over this surface. 

We suppose that at some time, t, the bubble geometry, S, and the potential on S are 
known. Equation (2.8) is then a Fredholm integral equation of the first kind for the 
normal fluid velocity, a$/an, at the bubble surface. Solution for this quantity allows the 
fluid velocity at the bubble surface to be determined. Knowledge of this velocity allows 
the bubble surface at some short time, 61, later to be determined. The potential on the 
surface at t + 6t may similarly be determined and we may solve (2.8) for a $ p n  at t + 6t. 
In this manner we iterate the solution for the flow field in time. In particular, if X 
denotes the position vector of some point on the bubble surface and u denotes the fluid 
velocity there, then solution of (2.8) allows determination of u and hence integration 
of the equation 

describing the motion of points on the bubble surface in the Lagrangian sense. The rate 
of change of the potential following some fluid element at the bubble surface is 

(2.1 1) 

a$/at having been eliminated using (2.4). Since lV#( = lulz) is known, (2.11) may be 
integrated simultaneously with (2. lo), thus giving the potential on the bubble surface 
as a function of time. 

The algorithm that is to be the basis for our study is that of Kucera (1993). To solve 
(2.8) Kucera (following Blake et al. 1986) employs a collocation method in an 
axisymmetric geometry. A set of n +  1 nodes are chosen on the surface of the bubble, 
with the assumption of axisymmetric motion necessitating only the description of a 
curve in two dimensions. We denote the cylindrical coordinates of the ith node as 
(r i ,z i )  with ie{O,l, ..., n}. The surface of the bubble is then represented by a cubic 
spline, constrained to pass through the node points, with the spline parameter chosen 
as the arclength along the curve that is the bubble surface. Similarly, the potential over 
the surface S is represented using a cubic spline, parameterized with respect to the 
arclength. We represent a$/an on S linearly with respect to the arclength, its value at 
the nodes being the unknown quantities that we solve for. Collocation of (2.8) at the 
node points yields a linear system of equations for a#/an at the nodes, that is solved 
via the singular value decomposition. In collocating (2.8) at the nodes, the integration 
over the azimuthal angle is performed analytically, yielding expressions involving 
elliptic integrals of the first and second kind. The integration over the arclength is 
performed numerically using Gauss-Legendre quadrature formulae. When the 
integrand is singular, the logarithmic singularity is subtracted and an appropriate 
quadrature scheme is utilized to complete the integration. For details concerning these 
aspects the reader is referred to the work of Kucera (1993) and Taib (1985). We 
comment that, typically, Fredholm equations of the first kind lead to poorly 
conditioned systems of linear equations. In this case, however, the integrand exhibits 
a logarithmic singularity and this leads to a well-conditioned system. The method used 
here is advantageous in that the quantity of interest, a$/an, is given directly. Other 
boundary integral formulations that lead to second-kind equations are possible and 
examples include those of Baker, Meiron & Orszag (1980, 1982, 1984) and Oguz & 
Prosperetti (1990). 

dX/dt = U, (2.10) 

d#/dt = a$/at+IV$lz = ~IV#12-a(Vo/V)Y-6z(z-~O)+ 1 ,  
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FIGURE 2. The collapse of a bubble characterized by /3 = -2, a = 100 and 6 = 0. The times 
corresponding to successive profiles are: 1.1552 (outermost), 1.7789, 2.0357, 2.0835, 2.0992, 2.1096, 
2.1 184, 2.1263, 2.1332, 2.1382 (innermost). 

Upon evaluating the fluid velocity at the node points, (2.10) and (2.1 1) are integrated 
in time using an Euler scheme with the time step chosen according to 

(2.12) 

where Aq5 is some constant. Application of this formula ensures that the change in 
potential at the nodes is bounded above by A$ for each time step. In the computations 
presented here Aq5 was chosen as 0.01. During the computation the mesh representing 
the bubble surface is redefined after every time step so that the nodes are evenly spaced 
with respect to the arclength. As the computation proceeds slight instabilities of a saw- 
tooth nature become evident in the bubble shape. To remove this instability the five- 
point smoothing formula first employed by Longuet-Higgins & Cokelet (1976) is 
applied every 5-20 iterations. 

The performance of this algorithm applied to cavitation bubble motion has been 
investigated by Kucera (1993), and data relating to the performance are presented in 
that paper. Particular tests on the code include computation of the motion of a 
spherical cavity in an infinite fluid, and excellent agreement is found with the analytical 
solution of Rayleigh (191 7). Furthermore, computations of jetting motion during 
collapse in the neighbourhood of a rigid boundary are in excellent agreement with the 
results of Blake et al. (1986). 

We consider two example computations but note that a parametric study of the 
motion of bubbles whose contents are described by (2.3) has been recently undertaken 
by Best & Kucera (1992). The first is shown in figure 2 and is characterized by a = 100, 
/3 = -2 and 6 = 0. The initial radius is 0.1651. Only the bubble shapes at successive 
times during the collapse phase are shown. During the growth phase the bubble 
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FIGURE 3. The collapse and rebound of a bubble characterized by B = -2, a = 10 and S = 0. The 
times corresponding to successive profiles are: (a) Collapse phase: 1.2793 (outermost), 1.8604,2.1936, 
2.3 146, 2.3644, 2.3945 (innermost). (b) Rebound phase: 2.4226 (innermost), 2.4535, 2.4895, 2.5327, 
2.5860, 2.6225 (outermost). 

qualitatively maintains a spherical shape to a good level of approximation. This 
characteristic depends, however, upon the proximity of the boundary. The bubble 
generally experiences some elongation along the axis of symmetry and experimental 
data on this aspect have been compiled by Vogel et al. (1989). Furthermore, the 
numerical study of Blake ef al. (1986) showed that for motion in very close proximity 
to a rigid boundary, the bubble may deform significantly from spherical shape during 
the expansion phase. Upon collapse, the greater mobility of the fluid away from the 
boundary causes the surface of the bubble there to collapse faster than elsewhere, 
leading to the formation of a liquid jet that threads the bubble and ultimately impacts 
upon the far side of the bubble. 

For this particular computation the number of elements, n, representing the bubble 
surface was equal to 32. In order to obtain some indication of the effect of smoothing 
the relative changes per smoothing operation in kinetic energy, AE, Kelvin impulse, AZ, 
and bubble volume, A V, were evaluated. The mean absolute values of these changes are 
A E  = 1 . 3 4 ~  AZ= 1 . 8 5 ~  lop4 and A V  = 1 . 4 8 ~  We note that all three 
quantities decreased due to smoothing, up until the time that the jet formed. 
Thereafter, the volume continued to decrease due to smoothing but the other quantities 
increased. These values indicate that, to a good degree of approximation, application 
of smoothing does not violate conservation of energy, momentum and mass, and 
further that smoothing does not alter the physics embodied in the mathematical model. 
The effect of mesh refinement may be illustrated by computing the quantities discussed 
above. For n = 64 the mean relative errors per smoothing operation are A E  = 
7.73 x AZ = 1.10 x and A V  = 9.05 x The computational effort for 
n = 64 is approximately four times that for the n = 32. For this reason, despite the 
order-of-magnitude smaller perturbations due to smoothing, the computations shown 
in this paper were carried out using n = 32. 

Impact was considered to have occurred at the time step prior to that at which the 
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FIGURE 4. The pressure within the bubble (-) and the bubble volume (--) as functions of 

time, for the motion depicted in figure 3. 

distance between nodes 0 and n, denoted by As, becomes less than 1.0 x lo-*. 
According to this criterion the time of impact here is 2.1382 with As = 1.07 x and 
the smoothing was applied every 5 iterations. Approximately 1035 time iterations were 
required consuming about 60 minutes CPU time on a VAX 8700. As a further 
comment on algorithm performance, the time of impact for various smoothing 
intervals was computed. If we denote the smoothing interval by is then the time of 
impact for n = 32 is 2.1382 (is = 5),  2.1380 (is = 10) and 2.1379 (is = 20). For n = 64 
the time of impact is 2.1379 (is = 5 ) ,  2.1378 (is = 10) and 2.1378 (is = 20). This 
variation is negligible compared to the lifetime of the bubble and is of the order of the 
error involved in setting a criterion that impact has occurred. 

The second example is characterized by a = 10, p = -2 and 8 = 0, and shown in 
figure 3. The initial radius is 0.3804. The pressure within the bubble and its volume are 
shown as functions of time in figure 4. In contrast to the previous case, the fluid 
velocities upon collapse are smaller and the high pressure generated by the decreasing 
bubble volume is sufficient to delay the full development of the jet until after the bubble 
has rebounded. In figure 3(a) we display the collapse phase of the motion and the 
elements of a jet directed towards the rigid boundary are evident at minimum volume. 
The rebound phase is shown in figure 3(b), and the momentum in the jet continues to 
drive the jet into the bubble as it re-expands, the decreasing bubble pressure assisting 
in this endeavour (figure 4). Again the computation is shown up until the time that the 
jet completely threads the bubble and impinges upon the far side. 

In order to continue the computation beyond the time of impact a number of 
difficulties must be resolved. In the first instance the potential is discontinuous at the 
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impact site. Secondly, there is a jump in the magnitude of the normal fluid velocity 
across the impact site, but this discontinuity cannot persist after the impact. Thus we 
give some consideration to the moment of impact. 

3. Evolution into a toroidal geometry 
Consider the schematic representation of axisymmetric jet impact in figure 5. We 

suppose that the flow domain f2 collapses from a singly connected to a doubly 
connected topology via an impact over a surface T, with the remainder of the bubble 
surface denoted by S. We shall denote the upper part of this surface by T+ and the lower 
part by T. In what follows, the subscript & shall denote quantities evaluated on T*. In 
particular, the unit normals to T,, exterior to the flow domain, will be denoted by n, 
and we note that these vectors are oppositely directed. We denote by superscripts i and 
f values immediately prior to, and immediately after the impact. If we let t be the 
position vector of an arbitrary point on T( = T+ u T-), then just prior to the impact $ 
and +/an are, in general, discontinuous across T. We write 

which is generally a non-zero function. 
In considering the evolution into a toroidal geometry we must address the physical 

significance of these discontinuities and determine whether they can persist after 
impact. Let us first address the discontinuity in $. As postulated by Benjamin & Ellis 
(1966) and others, the collapse of the flow domain into a doubly connected geometry 
will give rise to a flow with circulation. If the flow in the doubly connected domain 
possesses a circulation, r, we obtain its value by integrating the velocity around some 
closed curve that threads the torus ; 

= U . ~ S  = $, -$0, 1 
where dl and do are respectively the final and initial values of the potential on the curve 
V, provided Laplace’s equation is satisfied at all points on V. Let us suppose, for 
convenience, that the initial point of V is somewhere on T and that the curve %? 
proceeds from T- to T+. In order to perform this computation we require some 
information regarding the value of the potential on T* immediately after the impact 
has occurred. 

The action of the impact is to deliver an impulse to the fluid. Since the fluid is 
incompressible the disturbances associated with this impulse are transmitted with 
infinite speed throughout the fluid and immediately establish the flow field in the 
toroidal geometry. Following the discussion in Batchelor (1967, pp. 471-474) we 
consider the momentum equation 

aulat + u - vu = - v p / p  - ge,. (3.3) 

During the short interval over which the impulse is delivered the fluid velocity may 
change in value discontinuously throughout the flow domain. However, during this 
change the values of the velocity and its spatial derivatives remain finite and are 
negligible compared to aulat. Furthermore g is a constant, so that over the short 
interval during which the impulse is delivered we can write 

aupt = - y i p .  (3.4) 
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FIGURE 5. Schematic representation of the transition to the toroidal bubble geometry. The 
conditions at the surface Tare shown (a) before impact and (6) after impact. 

Integrating over the duration of the impulse we have 

where n= pdt  J 
is the pressure impulse. This argument is valid when viscosity is included, but in our 
case where the fluid velocity is the gradient of a velocity potential we deduce from (3.5) 
that 

$f-# = - n / p .  (3.7) 

Applying (3.7) at T, and T we have 

Since both surfaces experience a common pressure of the duration of the impact we 
have that 17, = n-, so 

(3.9) 

Hence we see that the value of r will, in general, depend upon the point on T that we 
choose to begin and end our curve, V, of integration. If A$(?) is not uniform then the 
flow field that exists after the impact will be rotational. It is only in the case where A$ 
is uniform that the flow field after impact is irrotational and possesses a circulation of 
A$* 

The consideration of the pressure impulse allows us to make further pertinent 
comments. On that part of the bubble surface denoted by S, the pressure for the 
duration of the impact is equal to p,,, the pressure inside the bubble that remains 

A$'(?) = $!+(t)-$!(t) = $!+(t)-$!(t) = A$(?). 
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FIGURE 6.  The numerical transition to the toroidal bubble geometry. The geometry is shown (a) 
immediately before and (b) immediately after impact. 

constant for the duration of the impact. This is so because S is a free surface. Hence 
at some point on S the pressure impulse is 

17, = p d t  = pbAt, (3.10) 

where At is the duration of the impact. In modelling the impact as an impulse we take 
the limit At -+ 0 so that 17, is equal to zero. Thus we deduce from (3.7) that for points 
on S the potential does not change due to the occurrence of the impact, a property that 
is exploited shortly. 

The fluid velocity at T immediately after the impact is of interest noting that the 
absolute value of the normal velocities at T, and T must then be equal in magnitude. 
It is not possible to obtain a simple expression for this velocity, but we may derive an 
equation the solution of which allows the computation of this speed. We consider first 
the tangential component of the fluid velocity at T. Since the upper and lower surfaces 
of T experience a common pressure impulse at each point we have 

vn+(t).z(t) = V17_(2).T(Z), (3.1 1) 

where z( t )  is the tangent vector to T at t. Hence we have from (3.5) that 

(uY(2) - u:(t)) 't(l)  = (U'_(t)  - UL(2)) - z(2). (3.12) 

Thus at any point on T, the tangential components of the fluid velocity at T+ and T 
change by the same amount due to the impact. If they are unequal before impact then 
this inequality will persist after impact and a vortex sheet will be created. This fact 
relates to the previous considerations regarding the line integral of the fluid velocity 
around some curve threading the torus. In the case where A#(t) is not uniform across 
T we deduced that the flow would be rotational. Such an example gives rise to a vortex 
sheet by the mechanism discussed above, this sheet being the source of the rotation in 
the flow field. 

It is probable that the fluid velocity will exhibit singularities at the time of impact. 
The diagram of figure 5 does not illustrate fully what will probably be the circumstance 
in reality. At S n T, the bubble surface may not be smooth at impact, as is the case for 
the point impact that occurs when the jet penetrates the bubble, as shown in figure 6(a). 
This latter example is highly suggestive of singularities in the fluid velocity at points of 

I 
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infinite surface curvature. The action of these is to smooth the surface and relieve the 
singularity. Expanding further on this point, suppose we consider a control volume 
about the impact surface in figure 5,  that is collapsed down so that its upper and lower 
surfaces are respectively T, and T, and its sides are S n T. Just prior to impact, there 
is a finite rate of flow into the control volume through the surfaces T+ and T, which 
must be matched by an outflow across the sides of the control volume (S n T). Since 
S n T has zero area, the fluid velocity must be at least instantaneously singular to give 
the necessary finite rate of outflow from the control volume. This consideration 
indicates a possible fluid velocity singularity at S n T, even in the case where S is 
smooth where it meets T. In the example illustrated in figure 5,  this singularity would 
cause a horizontally moving ring jet to arise from the contact surface. 

In these circumstances, it is possible that the term u-Vu in (3.3) may not be negligible 
at points in S n T for the duration of the impact. If we particularly address the case 
of ideal fluid flow, then integration of the Bernoulli equation over the duration of the 
impact yields #-# = ----[lv41zdz, I 7 1  

P 2  
(3.13) 

if the last term is assumed only to be finite, in the limit of an impulsive impact. In the 
derivation of (3.9), it is assumed that the pressure is a single-valued function 
throughout the whole of the flow domain. The Bernoulli equation then suggests that 
each of the terms appearing in this equation are also single-valued functions 
throughout the flow domain, and particularly on T. Hence it is not unreasonable to 
assume that for those points in S n T, where the last term in (3.13) may possibly be 
non-zero, that JlV4l;dt = JIV$l!ddt, and then (3.9) will follow for these points. The 
derivation of (3.12) follows also from this assumption, for those points in S n T. Since 
JlV$1*dt is possibly only non-zero on S n T, then the change in the tangential 
component of the fluid velocity may be singular only at S n T, which is consistent with 
previous assertions. For the remainder of the analysis in this section to be applicable 
irrespective of any possible singularities in V4, it is also necessary to assume that over 
a volume of measure zero, any singularity in lV4Iz integrates to zero. This property will 
then also be possessed by any component of V4. This assumption is equivalent to 
stating that there cannot be non-zero kinetic energy bound in a volume of zero. 

The preceding propositions must be confirmed by mathematical analysis, but at this 
stage the way to proceed in such an endeavour is unclear. In spite of this lack of 
knowledge of the detailed behaviour in the earliest times after jet impact, the 
considerations of this section may be used to guide the development of a numerical 
algorithm for the computation of toroidal bubble motion. Before proceeding with this, 
we require a boundary integral expression for the potential in the doubly connected 
flow geometry. 

We have been able to show that the potential on S does not change as a result of the 
impact. We may exploit this knowledge to determine an equation which gives the 
normal derivative of the potential on S just after the impact. Making use of (2.8) we 
may write the potential at P E  S immediately prior to impact as 

(3.14) Now aG/an+ = -aG/an- so we have (see figure 5u) 

a4i a Q  aG -+- GdS- A$-dS. (3.15) an J T ( a n +  an-) I T  an+ 2xq5'(p) = Jsf$G-$'- dS+ 
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Immediately after the impact we may write the potential at p as 

(3.16) 

since a$'/an+ = -a$'/an-. We have shown that A# = A$' and exploiting the fact that 
&I) = $'@) forpES we obtain from (3.15) and (3.16) the relation 

(3.17) 

which is satisfied at all pointspe S. This is an integral equation from which aq5'/an may 
be determined. In the toroidal geometry the expression for the potential is 

with c(p) given as in (2.9), provided p# T. For t e  T (4 T n S) we have 

(3.18) 

(3.19) 

Having obtained from (3.17) the value of a $ p n  on S after the impact, we may use 
(3.19) to evaluate the potential at points on T and (3.18) to evaluate the potential in 
the neighbourhood of T and hence determine the component of the fluid velocity 
normal to T. 

We now turn our attention to the impact of the jet in the collapse of bubbles. In the 
idealized model impact occurs at one point in an axisymmetric geometry (figure 6a). 
Across this point the potential is discontinuous by an amount A$, which corresponds 
to the circulation in the doubly connected flow topology. Since the surface over which 
the impact occurs is a point and A$ is uniform over this surface there is no vortex sheet 
created by the impact. In order to describe such a flow using a boundary integral 
method we introduce a cut, T, in the domain f2 which allows us to once again consider 
it as singly connected. The initial cut consists of the point of impact, but as the flow 
develops, the geometry of the cut changes. At any point on the cut, however, the jump 
in potential across it is A# with the geometry as in figure 5(b)  and the velocity potential 
is given by (3.18) and (3.19). In the limit of contact at a point the integral over T 
appearing in (3.17) vanishes so that over the surface S we have that a$'/an = a@/an, 
except perhaps at points in T n S where the normal is undefined. From our integral 
formulation the initial velocity of the impact point is indeterminate, as the surface T 
has been reduced to a set of measure zero. For the development of a numerical 
algorithm, however, this value is not necessary. Thus we have the theoretical base 
which will guide the numerical transition to a doubly connected flow geometry in the 
collapse of a bubble. We develop in the next section a boundary integral technique for 
the solution of (3.18) for a+/an at the bubble surface. The algorithm must be modified 
to include the term in this equation that involves integration over the cut T. This 
evaluation requires that the geometry of T is known. Thus we follow the cut as a 
material surface in the fluid. The details are discussed in the next section. 

Before closing this discussion we make some remarks about the Kelvin impulse and 
kinetic energy of the fluid. The Kelvin impulse of the bubble is defined as 

(3.20) 

4-2 
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We may write the impulse before impact as 

I' = p Js qih d S +  p Jy, A@+ dS, (3.21) 

having exploited n, = - n- in evaluating the integral over T. The impulse immediately 
after impact is 

f = p qi'ndS+p AqiPn,dS. (3.22) I.$ I, 
Since qii = q5' on S and Aqi = AqY on T, we see that 

1 = F, (3.23) 

and the impulse is conserved on impact. Note that this result is independent of whether 
the impact occurs at a point or over some surface, and is also independent of whether 
or not a vortex sheet is created by the impact. The kinetic energy of the flow is 

(3.24) 

where V represents the volume of the flow domain. In general, since Vqi changes 
discontinuously throughout Y- due to the impact there is a discontinuous decrease in 
the kinetic energy of the fluid. In the case of point impact, though, V$ is unchanged 
by the impact, except perhaps at the point of impact itself, which is a set of measure 
zero. In that case energy is conserved on impact. For impact over some surface the 
energy loss may manifest itself in the form of heat or acoustic energy. 

4. The algorithm for computing the motion of a toroidal bubble 
The motion of the bubble up until the time of impact may be computed using the 

boundary integral method described in $2. This computation yields the geometry of the 
bubble surface, the potential on it and the normal fluid velocity at this surface just prior 
to impact. The geometry just prior to impact is shown in figure 6(a). The number of 
nodes representing the bubble surface is n + 1, with the initial node labelled as 0. 

In order to numerically undertake the transition to a toroidal geometry we are 
guided by the considerations of the previous section. The impact occurs at the nodes 
0 and n, so that the circulation in the flow that evolves is 

Aqi = qin-$0, (4.1) 
with the subscript denoting evaluation at the node. Over S the potential is unchanged 
by the impact and, owing to its occurrence at a point, the normal derivative of the 
potential is unchanged over S. Thus we may evaluate the fluid velocity at the node 
points i = 1,2,. . ., n - 1 in the usual manner and determine their positions a short time, 
St,, later via the Euler time-stepping scheme. Similarly, the potential may be evaluated 
at these nodes at time t + &ti using the Euler scheme, where t here denotes the time of 
impact. The node 0 (= n) is the initial cut, T, and the initial speed of this point is 
unknown. Regardless of what this initial speed is, it is finite, and in determining the 
position of this point at some later time by an Euler time-stepping scheme we can make 
its displacement arbitrarily small by letting our initial time step, S t i ,  tend to zero. As 
Sti 0 the displacement of the bubble surface and change in potential on it also tend 
to zero. 

After this initial time step, however, we have no knowledge of where the cut, T, 
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meets the bubble surface. Although no analytic solution has been found for the early 
motion of the free surface about the impact point we might suppose that the very high 
surface curvature here gives rise to very high fluid velocities, the action of which is to 
immediately smooth the free surface. We perform this smoothing numerically by 
deleting the nodes 0, 1, n - 1 and n and fitting a smooth closed surface to the remaining 
nodes. Thus our bubble at time t + St ,  is represented by n - 2 nodes, including as a node 
the point where the cut meets the bubble. The point where the cut meets the bubble 
surface is taken to be halfway (with respect to arclength) between nodes 2 and n-2. 
This is the second node representing the cut, the first being the point at which impact 
occurs. The cut meets the bubble surface at right angles. This geometry is shown in 
figure 6(b). 

We are now in a position to implement a boundary integral method to solve (3.18) 
for a#/an on S. The technique is unchanged from that discussed in $2 apart from the 
appearance of the term A#J,aG/an+dS in (3.18). The cut is represented by a cubic 
spline parameterized with respect to the arclength along the cut, and knowledge of its 
geometry in this form allows evaluation of this term. At this point we shall define N = 
n - 2 and the number of nodes representing the bubble surface is then N +  1, noting 
that, by this choice of N ,  nodes 0 and N are coincident. Similarly, the number of nodes 
representing the cut is N ,  + 1, with the node on the axis of symmetry taken as node 0. 
Since the potential is discontinuous at node O/N we have that 

#N = #o+A# (4.2) 

for the duration of the motion. In the boundary integral expression for the potential 
(equation (3.18)) the normal that appears is that to the surface S U T. Despite the 
existence of a normal to S at node O/N,  the normal to S u T is undefined there, and 
so then is a#/&. Hence we choose to collocate at nodes i = 1,2, . . ., N- 1. In order that 
the effective length of each element is the same, that joining nodes 0 and 1, and that 
joining nodes N- 1 and N are half the length of all the others, reflecting the fact 
that we do not collocate at node O/N.  The collocation method yields a#/an at the 
surface of the bubble and upon evaluation of the fluid velocity there we may determine 
the positions of, and potential at each node at some small time interval later using 
the Euler integration scheme. 

Despite choosing not to collocate at node O / N ,  knowledge of the whereabouts of this 
node is essential to the computation as it defines that point on the bubble surface at 
which # is discontinuous. Although a#/& is undefined at node O / N  we may assign it 
a value here, and the appropriate value is the limit of a#/an as we approach the node 
along S .  This value is then the component of the fluid velocity normal to S, noting that 
despite the discontinuity in # here, the fluid velocity is everywhere continuous, so that 
the limit we choose is independent of the direction of approach along S. We evaluate 
the appropriate limiting value by linear interpolation since we have chosen a linear 
representation for a#/& as discussed in $2. 

In order to evaluate A$ JT aG/an+ dS  we must know the whereabouts of the cut, T, 
so we follow its motion throughout the computation and this necessitates a knowledge 
of the fluid velocity normal to this surface. We obtain this velocity as follows. Let n 
denote the normal to T a t  some point I, with n directed interior to the fluid on T+. If 
we further let 67 be some small distance then we can obtain a second-order finite 
difference approximation to the normal fluid velocity at T via 
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In the computations presented here 67 was chosen to be 0.005. Note that we have 
avoided the need to calculate the potential on the surface T itself. With this expression 
for the normal velocity we may propagate nodes on T along their normals, using the 
Euler scheme, to determine the position of this surface a small interval of time, 6t,  later. 
Note that we are not following the motion of fluid particles at T. To do so would 
require knowledge of the tangential component of the fluid velocity, which could be 
obtained, but at the expense of significant computation. Since only the geometry of this 
surface is required the extra computational effort needed to follow points on T in a 
Lagrangian fashion is seen to be superfluous. In any case, we are following the motion 
of T as a material surface in the fluid and, as we shall see shortly, this provides 
considerable assistance in visualization of the flow. As the computation proceeds in 
time the length of the cut increases. Thus nodes are added in order that this surface 
remains adequately resolved. An appropriate strategy is to insert an extra node when 
the mean spacing between nodes becomes greater than some maximum distance A&. 
In the computations presented here At, = 0.05. 

Every 5-15 iterations it is necessary to smooth the bubble surface, the cut surface 
and the potential on S as discussed in $2. In order to apply the smoothing formula to 
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the potential at nodes N- 1 and 1, where application of the five-point formula includes 
points on the other side of the discontinuity in q5, those points on the other side are 
artificially redefined by the addition (or subtraction) of A# for use in the formula. After 
applying the smoothing formula to nodes 1 ... N- 1, node O/N is taken to be halfway, 
with respect to arclength, between nodes 1 and N- 1. When smoothing the cut, node 
N ,  is considered as fixed, having already experienced smoothing as part of S. In order 
to apply the formula at node N ,  - 1 an artificial node N ,  + 1 is defined as the reflection 
of node N,-  1 about the plane tangent to the bubble surface at node N,. This choice 
is made to preserve the orthogonality of the cut and bubble surface at this point. This 
imposition of orthogonality is artificial as these two material surfaces will not remain 
orthogonal as the motion proceeds. However, imposing orthogonality both via 
clamping the cut spline and application of the smoothing formula assists in making the 
code more robust. A series of test computations were carried out using the free end, or 
not-a-knot end condition where the cut spline meets the bubble surface (see DeBoor 
1978). These led to computed bubble and cut geometries almost indistinguishable from 
those presented here. However, great care had to be taken in setting the frequency with 
which new nodes were inserted into the cut to ensure that the cut did not cross the 
bubble surface near to the point where the cut meets the bubble. The imposition of 
orthogonality of the cut and bubble surface alleviated this to a certain extent, and the 
error in the computed cut shape was negligible. Since the cut may be deformed 
arbitrarily throughout the flow domain the imposition of orthogonality of cut and 
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6 = 0, a = 100. The curve is discontinuous at the time that the transition to the toroidal geometry 
occurs. After this time the velocity plotted is that of the point on the cut, on the axis of symmetry. 

bubble surface causes no error in the computed bubble shape. When smoothing points 
near the axis, artificial cut nodes -2 and - 1, consisting of cut nodes 2 and 1 
respectively reflected about the axis of symmetry, are used to facilitate smoothing of cut 
nodes 0 and 1. In the case where less than three nodes represent the cut no smoothing 
is performed. The mesh is redefined after every time step so that the nodes representing 
the bubble surface and those representing the cut are evenly spaced, noting that the 
spacing on the cut is not necessarily the same as the spacing on the bubble. 

We conclude this section by making a comment of a mathematical nature. The cut, 
T, may be deformed throughout the flow field into any geometry that we choose. In 
order to interpret our results in view of recent experimental results we have followed 
T as a material surface. Equivalently we could proceed by redefining the potential 
throughout the fluid in order that the geometry of T is particularly simple. 

5. Example computations of the motion of toroidal bubbles 
The first example of toroidal bubble motion that we shall consider is for a bubble 

characterized by p = -2.0,6 = 0, a = 100. This example was considered in $2 and the 
motion up until the time of impact is shown in figure 2. The time of impact is taken 
as 2.1382 and the circulation is Aq5 = - 4.185. The computed motion is shown in figure 
7. The jet tip velocity is shown in figure 8, with the velocity of the uppermost point of 
the cut shown as this velocity for times after the impact. The centroid position as a 
function of time is illustrated in figure 9, the small discontinuity in this curve at the time 
of impact being purely a feature of the numerical transition to a toroidal geometry. 

After the impact has occurred the fluid flows through the torus at a reduced speed. 
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FIGURE 10. Three different initial toroidal bubble geometries: -, As = 1.07 x A# = -4.185, 
nodes n, n- 1, 1,O deleted; --, As = 2.08 x lo-*, A# = -4.1 19, nodes n, n- 1,1,0 deleted; ----, As 
= 1.07 x A# = -4.185, nodes n, n - 1, n -2,2,1,0 deleted. 
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In this case the initial speed of the cut is approximately equal to the average of the fluid 
velocities at the upper and lower impact surfaces just prior to impact. This observation 
is in accord with the fact that the jet impact is a momentum-conserving interaction. 
Over the impacting surfaces an equal and opposite impulse is delivered. The effect upon 
the jet is to discontinuously decrease its velocity. Similarly, the effect upon the nearly 
stationary side of the bubble into which the jet impacts is to increase its speed, so that 
the two contacting surfaces then move with a common velocity. The bubble continues 
to collapse after impact and the speed of the tip of the cut increases as fluid is drawn 
in by this collapse. The rebound of the bubble then slows this motion. The very rapid 
change in the fluid acceleration here is characteristic of the rebound of bubbles whose 
contents are described using the pressure law of (2.3). This behaviour is particularly 
evident in the case of large-amplitude oscillations of spherical bubbles described by the 
Rayleigh-Plesset equation, and is caused by the rapid rise in the bubble pressure upon 
collapse changing the direction of the bubble surface motion over a very short interval 
of time. We further note that the collapse is characterized by the fast migration of the 
bubble centroid towards the rigid boundary. After impact migration continues towards 
the boundary but slows as the bubble re-expands. The circulation in the velocity field 
manifests itself in a flow of fluid around the torus that is the bubble. This initial flow 
around impinges upon the bubble surface forming a depression that travels around the 
side of the bubble. As the bubble re-expands, however, this depression vanishes. 

It is recognized that the numerical transition to a toroidal geometry is somewhat ad 
hoc. In order, then, to gain some confidence that the computations presented here 
represent a plausible prediction of the real behaviour a number of convergence studies 
were carried out with respect to the parameters characterizing the initial insertion of 
a cut. The results for three different initial conditions are shown. For the results 
presented thus far, the distance between the upper and lower node at impact was 
As = 1.07 x lo-', and the nodes n, n - 1, 1 , 0 were removed and the cut then inserted 
as described previously. We also show here the results for this value of As, but with 
nodes n, n - 1, n - 2,2,1,0 removed. A further variation is the example where As = 
2.08 x lo-' with nodes n,n-  1,1,0 removed. In this latter case the circulation is 
A# = -4.1 19, the time of impact is 2.1374 and the point on the cut on the axis of 
symmetry is taken to be the node on the upper surface. These three different initial 
geometries are shown in figure 10. 

The quantities evaluated to indicate the invariance of the subsequent behaviour to 
these variations consist of the normal and tangential components of the fluid velocity, 
at the point where the cut meets the bubble surface. These velocities are shown in 
figures 1 1 (a)  and 11 (b)  respectively, and were chosen because the point where T and 
S meet is the only one on the bubble surface that is followed with the fluid. The 
significant variation is for the example where nodes n,  n - 1, n - 2,2,1,0 were removed. 
The lifetime was reduced in this case, but we can explain this occurrence by noting that 
the removal of the extra nodes has the effect of advancing the bubble shape 
discontinuously in time. These results indicate that the computed motion of the toroidal 
bubble is essentially independent of the parameters used to define the initial toroidal 
bubble, as long as they are varied reasonably. 

To consider the effect of smoothing and mesh refinement upon the computation of 
toroidal bubble motion Aland A V were computed, as in $2. The kinetic energy was not 
computed as the value depends upon the cut utilized. (See Batchelor 1967, pp. 112-1 14, 
for a discussion of this. The potential may be decomposed into the sum of a single- 
valued and cyclic potential in order to define the kinetic energy uniquely in terms of 
surface integrals. Investigations to date indicate that performing this decomposition on 
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a numerically computed potential function introduces large errors.) For the toroidal 
bubble that evolves from a singly connected bubble with n = 32 we have A I  = 
8.70 x with AZgenerally positive and A V  generally negative. 
For n = 64, AZ = 4.09 x and A V  = 1.68 x lo-'. These values indicate that 
momentum and mass are essentially conserved by the smoothing operation, although 
for long run times the accumulation of error may become significant. We further notice 
that the degree of improvement attainable by doubling n is not as good as in the case 
of the singly connected bubble. All subsequent computations of toroidal bubbles 
utilized n = 32 and this example required approximately 1240 iterations and 137 
minutes CPU time on a VAX 8700. At the end of this particular computation 30 nodes 
represented the cut. 

It is most relevant to consider the contrasting character of the pressure field in the 
fluid before and after the transition to the toroidal geometry, and this is computed 
using the Bernoulli equation. The pressure field just prior to impact ( t  = 2.1370) is 
shown in figure 12(a), and just after impact ( t  = 2.1470) in figure 12(b). Defining 
forwards as the direction of travel of the jet, this figure reveals a transition in the point 
of peak pressure from behind the bubble to ahead. Before the impact, the peak of 
pressure behind the bubble is the agent that drives the jet, but after impact this peak 
becomes located ahead of the bubble, its action being to decelerate the rush of the fluid 
through the torus towards the wall, and drive the motion of the fluid around the 
bubble. This finding is significant in assessing possible mechanisms for damage to 
boundaries due to cavitation or underwater explosion bubble collapse. It is apparent 
that even if the collapse is not so close to the boundary that we have water hammer 
impact pressures, the transition to the toroidal geometry creates a region of very high 
pressure in the fluid between the bubble and the boundary, leading to a loading of the 
boundary. For this example we have further computed the pressure at the rigid 
boundary just prior to, and just after impact, and this is shown in figure 13. Even 
though the bubble collapse is somewhat remote from the rigid boundary, the pressure 
experienced at the boundary is increased by over 50% due to the impact and the 
pressure distribution shows larger radial gradients. 

We compare this result with the motion of a toroidal bubble characterized by 
/3 = - 1.5, S = 0, a = 100, as shown in figure 14. The motion prior to complete 
penetration by the jet is very similar in character to that illustrated in figure 2; however, 
owing to the closer proximity of the boundary in this case, the jet formed is broader 
but moving with lower speed at impact. The circulation in this example is A$ = 
-4.629. The motion after impact shares many features with the previous example 
and we are able to here follow the motion up until the time that the fluid initially in 
the jet has flowed completely around the bubble. A difference of some significance is 
that in the first example the central region through the torus thins and we propose that 
the fluid here disconnects and the flow domain resumes a simply connected topology, 
whereas in this case the initial breadth of the jet creates a broader central region 
through the torus and no mechanism for disconnection in this case is apparent. In the 
first example, neglected physical effects such as surface tension and pressure 
fluctuations within the bubble will accelerate the disconnection of fluid flowing through 
the torus. 

and A V  = 1.60 x 

FIGURE 12. The pressure field in the fluid computed (a) just before and (6) just after the transition to 
a toroidal geometry. The motion is characterized by @ = - 2, a = 100, and 6 = 0. The times are (a) 
t = 2.1370 and (6) t = 2.1470. The isobars are at equally spaced pressure intervals. In (a), the pressure 
at the innermost contour is 62.0 and at the outermost contour is 18.0. In (b), the pressure at the 
innermost contour is 119.0 and at the outermost contour is 35.0. 
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FIGURE 13. The pressure at the rigid boundary just prior to (dashed curve, I = 2.1370) and just after 
(solid curve, t = 2.1470) the transition to the toroidal geometry that occurs during motion 
characterized by /3 = - 2, u = 100 and 6 = 0. 

In both of these examples the bubble continues to collapse after jet penetration, until 
the pressure inside is sufficiently high that further collapse is arrested and rebound 
occurs. In view of this it is interesting to consider an example in which jet impact occurs 
after rebound. The example we consider is characterized by /3 = -2.0, 6 = 0, a = 10, 
the collapse and rebound of the connected bubble discussed in $2. The jet at impact is 
slowing and the circulation in this case is given by A$ = -2.304. The motion of the 
toroidal bubble is shown in figure 15 and since the circulation is low in this case the 
fluid flowing through the torus tends to continue flowing forward in preference to 
flowing around the bubble. It again appears that the fluid flowing through the bubble 
will disconnect. 

We consider this example in the context of the recent experimental results of Vogel 
et al. (1989). In that work bubbles were generated by a laser in a fluid possessing a 
temperature gradient, so that the fluid in the jet is at a different temperature to the fluid 
into which the jet impacts. The fluid at different temperature has a different refractive 
index and is thus visible by a schlieren technique. Some of these results indicate profiles 
similar to those computed here (figure 24a from that paper), noting that such a 
visualization technique would give rise to an image of a bubble, with a cap 
corresponding to the cut computed here. Other results show what appear to be very 
sharp jets penetrating a large distance beyond the bubble (figure 7 a  from that paper). 
In such examples this structure does not usually become evident until after the bubble 
has rebounded. The computational results just presented indicate a cut geometry 
protruding above the bubble in such cases, but this geometry lacks the sharpness 
evident in the experimental results. 
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6. Discussion 
In this paper we have developed an algorithm for computing the motion of toroidal 

bubbles. Although sharing some similarities with the method of Lundgren & Mansour 
(1991), that developed here has particularly addressed the case of the toroidal bubble 
formed upon the collapse of transient cavities undergoing very large-amplitude 
oscillations, in contrast to the constant-volume bubbles considered in Lundgren & 
Mansour's recent investigation. Furthermore, we have here attempted to undertake the 
calculation from the moment that jet impact occurs, rather than begin the computation 
in the toroidal geometry by assuming a simplifying bubble shape. The treatment of the 
vortex ring is also different. Here we have introduced a cut in the flow domain in order 
that we may consider it as singly connected, whereas Lundgren & Mansour have 
explicitly added a vortex ring potential to a single-valued potential function, in order 
to account for the circulation in the flow. 

The results presented here have demonstrated the oscillatory nature of toroidal 
bubbles with rebound observed. The initial depression in the bubble shape due to the 
flow around the torus gradually vanishes as the flow field evolves and the motion 
appears to be stable. These results are qualitatively in accord with recent experiments, 
the results of Vogel et al. (1989) showing multiple oscillations of such bubbles. It is only 
after several oscillations that a wave-like disturbance, travelling around the torus, 
appears and ultimately leads to the break up of the bubble. Although the analysis of 
Pedley (1968) is not applicable to the large-amplitude oscillations of toroidal bubbles 
considered here or in recent experiments, it indicates the finite lifetime of vortex 
ring bubbles with their breakup caused by surface tension instabilities. The exper- 
iments of Vogel et al. also suggest that in some cases a permanent vortex ring bubble 
is formed on the second collapse, despite jet penetration occurring on the first 
collapse. The results presented here have indicated a mechanism by which this may 
occur. In some cases the fluid flowing through the torus thins upon re-expansion and 
presumably then disconnects, resulting in a flow domain that is once again singly 
connected. 

This process by which the toroidal bubble resumes a connected topology may 
provide a mechanism for the formation of what appear to be very sharp jets 



Formation of toroidal bubbles upon cavity collapse 105 

penetrating a large distance beyond the main part of the bubble surface (Vogel et al. 
1989). We may postulate that upon resuming a singly connected topology, the outflow 
of fluid caused by re-expansion causes the ejection of the element of fluid that remains 
penetrating the bubble. This may be the source of the sharp jet. We remark in this 
context that the surface about the disconnection point is characterized by very high 
curvatures. Hence we might suppose that the surface tension forces acting on the 
elements of the fluid about this point are significant and the action of this force will be 
to eject these elements of fluid from the bubble. This is perhaps a mechanism for the 
creation of what appear to be sharp jets. We further note that this behaviour is evident 
in experiments involving bubbles whose maximum radii are of the order of m, so 
that the radii of curvature associated with jet formation may be several orders of 
magnitude less than this. 

An initial investigation of this question may be pursued by including surface tension 
in the model. However, to do so would necessitate an understanding of the role that 
surface tension plays in the initial impact of the jet upon the far side of the bubble, 
noting that the jet tip is characterized by a very high curvature. This aspect is an open 
question and a very difficult one as the mechanism by which the two contacting 
surfaces breakdown and become one is not well understood. Oguz & Prosperetti (1989) 
have recently considered this question, but perform calculations of the motion of two 
surfaces after such a contact by assuming that they are initially connected by an 
element of fluid. Their work indicates a complex behaviour, with a wave-like 
disturbance arising from the contact point leading to fluid contact at a number of 
points away from the initial contact element. The gas entrapped between these multiple 
contact points presumably forms a collection of bubbles. Furthermore, it has been put 
forward by Vogel et al. (1989) that in some cases the surfaces at contact do not break 
down and form one, but remain separated by a thin layer of gas, with the impact of 
the jet pushing the surface of the bubble ahead, the behaviour much as if a jet impacted 
upon a membrane. Surface tension must play a significant role in preventing the 
breakdown of the surfaces if this is a feasible behaviour. 

For large-scale bubble phenomena such as that caused by an underwater explosion, 
however, surface tension is not expected to play a major role at any stage of the motion, 
although in the context of the disconnection of the fluid flowing through the torus, if 
this fluid becomes sufficiently thin the high temperature of the detonation products or 
fluctuations in the pressure field may be sufficient to cause this fluid to break up, 
yielding a singly connected flow domain. Remarking further on the possibility of this 
disconnection process, an investigation of some relevance is that of Chesters & 
Hofman (1982) in which the coalescence of two slowly approaching bubbles in a 
viscous fluid has been considered. The two bubbles are initially separated by a thin film 
of liquid which must break down for the two bubbles to become one. This is similar 
to the situation that arises when the fluid flowing through the torus thins and then must 
break up for the flow field to resume a singly connected topology. The analysis suggests 
a complex behaviour with the breakup of the surface occurring around some ring 
encircling the initial point of minimum fluid thickness. It remains for further 
investigation to clarify the behaviour of surfaces upon contact and breakup in order 
that the influence of these phenomena on the motion of toroidal bubbles may be 
determined. 

Once a toroidal geometry has been assumed the method described in this paper may 
be used to compute the motion of the bubble. Furthermore, the ideas developed here 
may be applied to the transition to a doubly connected flow geometry that occurs when 
steep surface waves on water overturn. 
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